1.6 Piecewise Functions

A Piecewise-Defined Functions A piecewise-defined function requires more than one formula to explicitly define the function. Each formula is defined on a different interval. Note: The domain of the piecewise-defined function is the union of all intervals used to define the function.	Ex 1. Let consider the function $y = f(x) = x - 2 $. Write this function as a piecewise function and then graph it.
Ex 2. The Heaviside function is defined by: $H(x) = \begin{cases} 1, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$ Graph this function and analyze its continuity.	Ex 3. The Greatest Integer Functions $[x]$ defined in words by: " $f(x)$ is te greatest integer n that is less or equal to x " or: $[x] = n, n \in Z, n \le x < n+1$ Graph this function and analyze its continuity.
Ex 4. The XYZ function is defined by:	Ex 5. Graph the following piecewise function:
$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ Can be this function represented graphically? How?	$f(x) = \begin{cases} x - 4, & \text{if } x > 2 \\ -1, & \text{if } x = 2 \\ x^2 - 4, & \text{if } x < 2 \end{cases}$

Ex 6. Let consider the function: y = f(x) = x - x+1 - x+2 Write this function as a piecewise function and then graph it.	Ex 7. Write the function $f(x) = \sqrt{x^2}$ as a piecewise function and then graph it. Ex 8. Write the function $f(x) = \frac{ x }{x}$ as a piecewise function and then graph it.
B Continuity The graph of a continuous function can be drawn "without lifting pencil from paper". A continuous function has no holes, finite gaps (jumps), or infinite breaks.	Ex 9. For what value of the constant c is the function $f(x) = \begin{cases} x+c & \text{if } x < 2\\ cx^2 + 1 & \text{if } x \ge 2 \end{cases}$ continuous at every number?
C Absolute Value of a Function The absolute value of a function is defined by: $ f(x) = \begin{cases} f(x), & \text{if } f(x) \ge 0\\ -f(x), & \text{if } f(x) < 0 \end{cases}$	Ex 10. For each case, graph the original function $f(x)$ and then graph $ f(x) $. a) $f(x) = 2x - 6$ b) $f(x) = x^2 - x - 6$

Reading: Nelson Textbook, Pages 46-51 Homework: Nelson Textbook, Page 51: #1cf, 3, 5cd, 7, 8, 11, 14, 15